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Abstract. Two celebrated statistical principles- Principle of Maximum Likelihood and
Principle of Maximum Entropy are merged establishing a novel estimation scheme for statistical
inversion.

1. Introduction
The role of entropy as uncertainty measure in communication and information theory was
recognized by Shannon. His definition S = −∑

n pn log pn is unique in the sense that fulfills
reasonable demands put on the information measure associated with a probability distribution
pn. In particular, the uniform distribution provides the largest uncertainty. The importance
of entropy for physical and technical practice was first noticed by Jaynes [1], who proposed
a variational method known as the principle of Maximum Entropy (MaxEnt): The inferred
probability distribution should fulfill the given constraints and simultaneously maximize the
Shannon entropy. This gives the most unbiased solution of the problem consistent with the given
observations. Such inferences appeared to be extremely useful in many applications covering
the fields of statistical inference, communication problems or pattern recognition [2, 3, 4].

But entropy is not the only important functional in probability theory. The entropic measure
known as Kullback-Leibler divergence [5] or relative entropy E({pi}|{qi}) =

∑
i pi log(pi/qi)

bears striking resemblance to the Shannon entropy, however it posses rather different
interpretation. It quantifies the distance in the statistical sense between two different
distributions pi and qi. Provided that one party (pi in our notation) are the sampled relative
frequencies, the principle of minimum relative entropy coincides with the maximum likelihood
(MaxLik) estimation problem [6, 7]. At present there are many examples of successful application
of MaxLik estimation technique for solving inverse problems, see e.g. [8].

Though both the celebrated principles, MaxEnt and MaxLik, rely on the notion of entropy,
their usage and interpretation differ substantially. The former one provides the most pessimistic
guess consistent with the data, while the later one provides the most optimistic fit to the given
data. [2, 6]. Both methods have their drawbacks: MaxLik can deal with noisy data in realistic
experiments but it usually requires a certain cut-off in the parameter space. Otherwise the
solution may appear us under-determined; instead of a unique answer there can exist a convex
set of most likely states. MaxEnt principle removes this ambiguity by selecting the most unbiased
solution. However, since realistic data are noisy, the corresponding constraints may appear to
be inconsistent. The purpose of this contribution is to merge both these concepts into a single
estimation procedure providing the most likely and most unbiased solution without any cut-offs.
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Figure 1. An optical multiport; μ is the quantum efficiency of used detectors; Tj are
transmission coefficients.

2. Inverse problems
Let us consider a state μi ≥ 0, i = 1 . . . N , which is to be inferred from the observed
relative frequencies fj . For simplicity we will assume that the dependence of the corresponding
theoretical probabilities pj on μi is linear and positive,

pj =
∑

i

cjiμi, cji ≥ 0, j = 1 . . . M. (1)

When N > M the problem is said to be under-determined. Typically, this happens when the
parameter space is infinite, i = 1 . . .∞.

An interesting example of an under-determined problem in optics is the reconstruction of the
photon content of a light pulse, see figure 1. The input pulse is linearly split into several parts
that get detected by a common detectors with yes/no response. Let us denote j the outcome
of a single run. Having d detectors there are 2n of such possible results. Repeating now the
experiment many times with identical light pulses, the probability pj of detecting result j can
be expressed in the form (1), where μj represents the photon-number statistics of the light
source. The corresponding coefficients cji can be found in [9]. Of course, this problem is always
under-determined since the number of photons is not bounded from above.

3. Maximum-likelihood inversion
MaxLik solution is obtained by minimizing the relative entropy (or log-likelihood) between
data and theory E(fj |μj). Numerically, this can be done using the Expectation-maximization
algorithm [10, 11],

μn+1
i = μn

i Ri, Ri =
∑

pj∑
μn

i

∑
j cji

∑

j

fjcji

pj
, (2)

where n labels successive iterations. In well- and over-determined case, M ≥ N , the MaxLik
solution is unique due to the convexity of E. In under-determined case, the likelihood exhibits
a plateau of maximum-likely states. In the latter case, the numerical result strongly depends on
the starting point of iterations: Let us impose an additional constraint on the MaxLik solution
to remove this ambiguity.

4. Maximum-entropy inversion
Taking the observed data as constraints

pj(μi) = fj , (3)
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the entropy of the inferred state, E = −∑
i μi log μi, will be maximized by choosing

μi = exp (
∑

j

λjcji), (4)

where the Lagrange multipliers λj are determined by the constraints. Notice that the MaxEnt
solution is always unique. The problem here is that noisy data can yield inconsistent constraints,
meaning that the system of equations (3) together with (4) has no solutions. Being aware
of this subtlety we will in the following use the concept of entropy to get a unique MaxLik
reconstruction.

5. MaxEnt assisted MaxLik inversion
Having found a maximum of the likelihood functional in section 3, we still do not know whether
this solution is unique or not. Provided a closed set of such states exists, we would like to
maximize the entropy functional over it. In this way we will get the least biased maximum-
likelihood guess.

Notice that due to the convexity of the relative entropy all states belonging to the maximum
likely set must generate the same theoretical probabilities pj({μML}k) = pj({μML}l), ∀j, k, l. We
will take those probabilities as constraints of the new optimization problem: Maximize entropy
E(μi) subject to constraints

pj(μi) = pj(μML
i ), j = 0 . . . M, (5)

where μML
i is a maximum likely state.

Now two distinct cases arise. Provided the measurement is complete,
∑

j pj = 1, one can
directly use the MaxEnt solution (4) in (5) yielding the set of nonlinear equations

∑

i

e
∑

j′ λj′cij′ cij =
∑

i

cijμ
ML
i , (6)

which are to be solved for the Lagrange multipliers λj generating the maximum-entropy
maximum-likelihood estimate via (4).

In the more general case of an incomplete measurement,
∑

j pj �= 1, when some output
channels are not observed, only the ratios of probabilities can be determined from data.
As a consequence the log-likelihood

∑
j fj log pj that has led to (2) must be replaced by∑

j fj log(pj/
∑

pj) and the constraints (5) assume a more general form

pj(μi) = αpj(μML
i ), j = 0 . . . M. (7)

Here α is a normalization constant to be optimized over. Denoting μ(α) the α-dependent
solution of (7), we look for αopt maximizing the entropy, αopt = arg max

α
E[μ(α)]. Numerical

implementation of this problem will be discussed elsewhere.

6. Example
The proposed approach combines good features of maximum-likelihood and maximum-entropy
methods. From the set of density matrices that are most consistent with the observed data in
the sense of maximum likelihood we select the least biased one. At the same time the positivity,
and thus also physical soundness, of the result is guaranteed.

Let us illustrate the MaxEnt assisted MaxLik inversion on the measurement of the photon-
number statistics of a light pulse. The results of a numerical simulation are summarized in
figure 2. For it we have chosen a mixture of two Poissonian pulses with the mean intensities 1
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Figure 2. Simulation of an indirect photon-number measurement with the help of an optical
multiport: (a) the true photon-number statistics; (b) a MaxLik solution obtained via the
expectation-maximization algorithm from a randomly chosen starting point; (c) the maximum
likely statistics having the largest entropy.

and 10 photons per pulse, respectively, see figure 2(a). The simulated multiport measurement
device had four output channels with the transmission coefficients (see figure 1) T1 = 0.208,
T2 = 0.566, T3 = 0.286, and T4 = 0.084. Such a device yields M = 24 = 16 possible independent
outcomes. The goal was to reconstruct the photon-number statistics of the input pulse up to
the photon number n = 50, so the parameter space had dimension N = 50. Notice that this
inversion is strongly under-determined N � M .

Figure 2(b) shows a typical result of the maximum-likelihood estimation of section 3. The
initial guess for the expectation-maximization algorithm was chosen in random. As can be
expected, the family of maximum-likely states contains states that are far from the true state.
Different initial guesses lead to very different answers.

To get a unique reconstruction the simulated data were processed using the method proposed
in the previous section. Since we assume that all the output results are observed, the
measurement is complete and the corresponding probabilities sum to unity

∑16
j=1 pj = 1.

Inserting the maximum-likely distribution of figure 2(b) on the right-hand-side of (6) and
numerically solving the resulting set of nonlinear equations we get Lagrange multipliers
representing the photon-number distribution shown in figure 2(c). This is the maximum-likely
photon-number statistics having the largest entropy. Comparing the three panels of figure 2
one can say that the use of entropy as an additional criterion for selecting a unique MaxLik
reconstruction is well justified.

7. Conclusion
We have demonstrated the utility of the maximum-entropy principle for tomographically
incomplete quantum state reconstruction schemes. Although the entropic principles cannot
be directly applied to noisy experimental data due to the possible inconsistency of constraints
involved, they can be used to remove the ambiguity of maximum likelihood estimation. The
proposed method could find applications in quantum homodyne detection and other related
infinite-dimensional problems suffering from the lack of experimental data.
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