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17. listopadu 50, 772 07 Olomouc, Czech Republic

2Meopta-optika, s.r.o.,
Kabelı́kova 1, 750 02 Přerov, Czech Republic
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Abstract: In the paper, light filaments realized as extremely narrow
pseudo-nondiffracting beams with the spot size of several micrometers
are examined. Attention is focused on their physical properties, attainable
geometrical and energetic parameters and on the optical method enabling
continuous relocation of the beam spot across the transverse plane. Testing
of the laser convertor designed to realize adjustable minisized pseudo-
nondiffracting beams is described and discussed. Experimental results
approving useability of the set-up for optical transport of microparticles
along a desired trajectory are also presented.
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1. Introduction

During two last decades, an increasing attention has been focused on physical properties, ex-
perimental realization and applications of nondiffracting (ND) beams. In an exact mathemati-
cal treatment, the monochromatic ND beams can be established as solutions of the Helmholtz
equation. The complex amplitude of the ND beam then can be described by the well-known
mathematical functions obtained applying the separation of variables in the convenient coor-
dinate systems [1, 2, 3, 4, 5]. An illustrative explanation of the creation of the ideal ND beam
provides Fourier optics. In this case, the ND beam can be comprehended as an interference field
created by plane waves whose wave vectors k ≡ (kx,ky,kz) have the same projection to the di-
rection of the beam axis, kz = const. The plane-wave components of the beam then change the
phase in exactly the same way so that their interference pattern representing the beam intensity
profile does not change under free-space propagation. The condition of the ND propagation puts
a restriction on propagation directions of the plane-wave components of the spatial spectrum
of the ND beam but admits an arbitrary amplitude and phase offset of each component. A tar-
geted amplitude and phase modulation of the spatial spectrum enables the beam transformation
important for its practical use. For example, the intensity profile of the ND beam can be shaped
to a predetermined form or an array of the ND beams can be created [6, 7]. In an ideal case,
the intensity profile of the ND beam is independent of the propagation coordinate and remains
unchanged from −∞ to +∞. Its size can be adjusted in a wide interval by changing the angle
which the wave vectors of the plane-wave components make with the beam axis. In an extreme
case, the ND beam has a form of an infinite light filament with the diameter approximately
equal to the wavelength of the used radiation. A conception of the ND propagation of light
has only a theoretical meaning and cannot be directly connected with real experiments. The
reason is an infinite energy covered by the cross-section of the ideal ND beam. In experiments
realized by means of the annular amplitude mask, the axicon, the diffractive optical element
or the computer generated hologram sent to the spatial light modulator [8, 9], the so-called
pseudo-nondiffracting (P-N) beam can be generated. In its mathematical model, the transverse
amplitude profile of the beam is bounded by a square integrable envelope so that the energy
carried by the P-N beam is finite [10]. Under convenient experimental conditions the realizable
P-N beams represent a good approximation of the theoretical ND beams.

In the paper, the geometry and energetics of the minisized P-N beams of the Bessel-Gauss
(B-G) type are examined. The particular attention is focused on a method enabling continuous
relocation of the beam spot across the allocated area of the transverse plane. The principle of the
method is based on the phase modulation of the spatial spectrum. In the paper, the mathematical
explanation of the beam spot relocation to the off-axis position is presented and its optical
realization is proposed. The optical set-up enabling conversion of the fiber mode to the B-G
with the adjustable spot is designed and realized as a compact laser convertor. Experimental
results obtained by testing of the convertor are also presented. A possibility to connect the laser
convertor to the optical tweezer and to use it for optical manipulations is verified and discussed.



2. Conception of nondiffracting propagation of light

2.1. Theoretical nondiffracting beam

In a scalar approximation, the ideal monochromatic ND beam can be comprehended as a mode-
like field propagating along the well defined direction (z-axis). Its complex amplitude U N can
be written as a product of the transverse amplitude profile u N and the phase oscillating term
appointed by the propagation constant kz,

UN(r) = uN(x,y;kt )exp(−ikzz). (1)

Intensity profile of the ND beam I = |uN |2 remains unchanged during propagation and its di-
mensional scale depends on the parameter kt , that can be expressed by means of the wave
number k as k2

t = k2 − k2
z . The spatial spectrum of the ND beam is reduced to a single radial

spatial frequency so that it can be expressed by the Dirac delta-function δ (k 2
x + k2

y − k2
t ) in the

k-space. If Eq. (1) is substituted into the Helmholtz equation, the admissible profiles of the
nondiffracting beams uN can be found applying the separation of variables in the Cartesian,
circular cylindrical, elliptical cylindrical or parabolic cylindrical coordinates [11]. By this way,
the nondiffracting fields known as the Bessel, Hermite-Bessel, Mathieu and parabolic beams
can be obtained.

Fig. 1. Optical beams illustrated as interference field: (a) theoretical ND beam, (b) realiz-
able P-N beam.

The ND propagation of light can be explained and clearly demonstrated if the ND beam
is considered to be an interference field of plane waves with specially chosen propaga-
tion directions. The complex amplitude of the separate plane waves is given as U PW (r) =
aexp(−ikt · rt − ikzz + iΦ), where kt ≡ (kx,ky), r ≡ (rt ,z), rt ≡ (x,y), a is a constant ampli-
tude and Φ denotes a phase offset. The ND propagation is ensured only if the longitudinal
component of the wave vector kz is the same for all plane-wave components of the beam. This
condition implies that also the magnitude of the transverse vector k t is constant even if its di-
rection changes for separate plane waves in dependence on the angle ψ (Fig. 1 a). If we assume
that the ND field rises from a continuous superposition of plane waves, their wave vectors cre-
ate a conical surface whose axis coincides with the propagation direction of the ND field. The
vertex angle of the cone 2θ is simply related to the transverse and longitudinal components of
the wave vector, kt = k sinθ , kz = k cosθ . Change of the angle θ causes dimensional scaling of
the transverse intensity spot of the ND beam. If θ increases, the ND beam becomes narrower.



If the geometry of the interfering waves is described in the circular cylindrical coordinates,
x = ρ cosϑ , y = ρ sinϑ , kx = kt cosψ and ky = kt sinψ , the ND field UN is obtained by integra-
tion of the plane waves UPW along the azimuthal angle,

UN(r) = exp(−ikzz)
∫ 2π

0
A(ψ)exp[−iktρ cos(ϑ −ψ)]dψ , (2)

where A(ψ) = a(ψ)exp[i Φ(ψ)]. The dependence of a and Φ on ψ means that the the ampli-
tude and the phase offset can differ for separate plane waves. In general, A(ψ) is an arbitrary
periodical complex function. Its choice can be utilized for shaping of the beam intensity but
it does not disturb the ND propagation of the beam. The azimuthal modulation of interfering
plane waves is exploitable for generation of very complex ND fields including single or com-
posed vortex fields, arrays of ND beams or ND fields with a predetermined shape [6, 7]. An
admissible variability of A(ψ) can also be used for a controllable transverse relocation of the
beam spot [9]. If the amplitude A(ψ) is replaced by

A(ψ) → A(ψ)exp[ikt(Δxcosψ + Δysinψ)], (3)

the obtained ND beam preserves its shape and propagation direction but its center is trans-
versely shifted to the position given by coordinates [Δx,Δy]. The complex amplitude of the
beam is then given by UN(x−Δx,y−Δy,z). The required phase change of the angular spectrum
(3) can be simply realized optically. It was utilized in design of the laser convertor enabling
generation of adjustable light filaments. In a special case, the amplitude a and the phase offset
Φ are constant for all plane waves used in the continuous superposition. Their interference then
results in the well-known zero-order Bessel beam [1, 2].

2.2. Realizable pseudo-nondiffracting beams

The ND beam whose transverse intensity profile remains exactly invariable during propagation
is an unattainable idealization. To simulate the experimentally realizable beam, the theoreti-
cal ND beam must be transversely bounded. In this case, the intensity asymptotically vanishes
faster than 1/ρ 2, where ρ is the transversal distance from the center of the beam. As a result, the
P-N beam carrying finite energy is obtained. A simple and practically applicable model of the
P-N beam is obtained if the bounding envelope has a Gaussian form. In this case, description
of the P-N beam follows from the Helmholtz equation solved in the paraxial approximation.
In the circular cylindrical coordinates, the well-known B-G beam is obtained as a realizable
approximation of the theoretical Bessel beam. The P-N beam with a general intensity profile
can be introduced applying the integral representation. In this case, the P-N beam can be com-
prehended as an interference field of inclined monochromatic Gaussian beams G whose axes
create a conical surface with the vertex angle 2θ [10] (Fig. 1 b). The axes of the separate
Gaussian beams are specified by the angles θ and ψ and their amplitudes are given by A(ψ).
The complex amplitude of the P-N field then can be expressed as

UPN(ρ ,ϑ ,z) =
∫ 2π

0
A(ψ)G(ρ ,ϑ ,z,ψ)dψ . (4)

The Gaussian beams under the integral can be specified by the complex parameter q defined by
the confocal parameter q0 as q = z+ iq0. The complex amplitude UPN then becomes [12]

UPN(ρ ,ϑ ,z) = exp

(
−i

k2
t z2

2kq

)
UG(ρ ,z)U(Qρ ,ϑ ,z), (5)



where UG denotes the Gaussian envelope and U is given as

U(Qρ ,ϑ ,z) = exp(−ikzpz)
∫ 2π

0
A(ψ)exp[−iktQρ cos(ϑ −ψ)]dψ . (6)

As is obvious, U has a form of the ND beam (2) where the propagation constant k zp is replaced
by its paraxial approximation

kzp = k

(
1− kt

2

2k2

)
, (7)

and the variable ρ is replaced by a scaled variable Qρ . The field intensity is not propagation
invariant because except of the oscillating term also the complex scaling factor Q depends on
the propagation coordinate,

Q = 1+
z
q
. (8)

The Gaussian envelope can be expressed by means of the standard parameters w 0, R and Ω
representing the beam waist radius, the wavefront radius and the Gouy phase shift, respectively,

UG(ρ ,z) =
w0

w
exp

(
−ρ2

w2 − i
kρ2

2R
+ iΩ

)
, (9)

where

w = w0

(
1+

z2

q2
0cos2θ

)1/2

, (10)

R =
z

cosθ
+

q2
0 cosθ

z
, (11)

Ω = arctan

(
z

q0 cosθ

)
. (12)

A clear explanation of the differences between the ND and P-N beams can be demonstrated
in terms of the Fourier optics. As was shown, the ND beam is in fact an interference field
produced by the plane-wave components of the spatial spectrum given by the single radial
spatial frequency ν = sinθ/λ . In real experimental conditions, the interference field is not
created by the plane waves with an infinite extent but by bounded waves. Therefore, the spatial
spectrum is not limited to the single radial spatial frequency but it spreads to an annular area.
The model of the P-N beams represents the experimentally realized beams very well. The beams
can be simply created by means of an axicon or an annular mask placed at the front focal plane
of a lens. Advanced experiments enabling generation of the P-N beams are based on application
of the holographical element or the spatial light modulator.

3. Properties of minisized pseudo-nondiffracting beams

The ND and P-N beams represent a very wide group of optical fields with different intensity
profiles and various physical properties. In the paper, the beams of the Bessel and B-G type are
examined. Such beams were successfully applied to various laser tweezer experiments demon-
strating simultaneous micromanipulation in multiple planes [13] or trapping and subsequent
precise delivery of several submicron particles over a distance of hundreds of micrometers [14].
The B-G beams were also verified to be well suited to rotationally align rod-like particles along



the beam direction and to build and manipulate stacks of particles [15]. In the paper, attention
is focused on geometrical parameters and energetics of the B-G beam and on optical means
enabling relocation of the beam intensity spot across the transverse plane. An expediency of
the B-G beams for their utilization in optical manipulation is discussed and demonstrated on
comparison of parameters of the B-G and Gaussian beams.

3.1. Geometrical parameters

The complex amplitude of the ND and P-N beams can be expressed by the integrals (2) and
(6) in which an arbitrary periodic function A(ψ) appears. If it represents the phase modulation
given as A(ψ) = exp(imψ), m = 0,±1,±2, · · ·, the integral (2) results in

UN(ρ ,ϑ ,z) = (−1)mim2πJm(ktρ)exp(imϑ − ikzz), (13)

where Jm denotes the m-th order Bessel function of the first kind. If the same azimuthal phase
modulation A(ψ) is applied to the integral providing the P-N beam, its complex amplitude U PN

can be expressed by (5) with U given by

U(Qρ ,ϑ ,z) = (−1)mim2πJm(ktQρ)exp(imϑ − ikzpz). (14)

In this case, the B-G beam is obtained. Its transverse amplitude profile is described by the Bessel
function Jm bounded by the Gaussian function UG. For m �= 0, the Bessel and B-G beams are
dark at the axis. They have a helical wavefront and belong to the group of optical vortices. In
the paper, the bright zero-order Bessel and B-G beams (m = 0) are examined. In the case of the
zero-order Bessel beam, the normalized intensity can be written as

IN(ρ) ≡ |UN(ρ)|2
|UN(0)|2 = J2

0 (ktρ). (15)

As a member of the group of the theoretical ND beams, the zero-order Bessel beam reaches
from −∞ to +∞. The beam is unbounded and carries an infinite energy. In the case of the B-G
beam with the complex amplitude UBG, the normalized intensity is defined by

IBG(ρ ,z) ≡ |UBG(ρ ,z)|2
|UBG(0,0)|2 . (16)

By means of (5), it can be rewritten to the form

IBG(ρ ,z) =
w2

0

w2 exp

[
−2ρ2

w2 − k2
t z2q0

k(z2 + q2
0)

]
J0(ktQρ)J0(ktQ

∗ρ). (17)

At the plane z = 0, the beam is expressed as the ideal Bessel beam bounded by the Gaussian
envelope,

IBG(ρ ,0) = J2
0 (ktρ)exp

(
−2ρ2

w2
0

)
. (18)

The Bessel function J0 defines intensity profile resembling the well-known Airy diffraction
pattern. Its central disk has the radius given by ρ0 = 2.4/kt . If ρ0 is small in comparison with
the waist radius of the Gaussian envelope w0, the B-G beam well approximates the ideal Bessel
beam in a finite propagation region. Its length zBG depends on w0 and in experiments it can be
changed for beams with the same ρ0. The length of the region where the B-G beam exists can
be examined by means of the axial intensity. Its normalized form can be written as

IBG(0,z) =
w2

0

w2 exp

[
− k2

t z2q0

k(z2 + q2
0)

]
. (19)



For propagation distances of interest which are considerably shorter than the Rayleigh distance
of the Gaussian envelope, z << q0, the axial intensity can be simplified to the form

IBG(0,z) = exp

(
−2z2 sin2 θ

w2
0

)
. (20)

The maximal propagation distance zBG can be defined by means of an admissible decrease of
the normalized axial intensity, IBG(0,zBG) = 1/e2. The length of the usable propagation region
of the B-G beam then can be written as

zBG =
w0

sinθ
≈ w0

θ
. (21)

As is obvious, the length of the B-G beam with the fixed size of the intensity spot ρ 0 is enlarged
if the waist radius w0 of the Gaussian envelope expands. This is unique property of the P-
N beams unattainable with common laser beams. It can be successfully utilized for convey of

Fig. 2. Comparison of (a) the focused Gaussian beam and (b) the P-N beam of the B-G
type.

micro-particles in optical manipulation where the narrow optical beams with a long propagation
range are required. To demonstrate preferences of the P-N beams, the attainable parameters of
the B-G and strongly focused Gaussian beams are compared under similar demands on optical
elements used in the optical set-up (Fig. 2).

If the collimated Gaussian beam with the waist radius w0 impinges on the lens with the focal
length f (Fig. 2a), it is focused to the spot with the waist radius w0F given by

w0F =
2 f
kw0

. (22)

The transformed beam can be treated as well focused inside a region whose length z G follows
from definition of the Rayleigh distance,

zG = kw2
0F . (23)

The angular divergence of the focused Gaussian beam θ G can be written as

θG =
2

kw0F
. (24)



To examine propagation properties of the B-G beam, a simple experiment illustrated in Fig. 2b
is considered. In this case, the annular light source is placed at the front focal plane of the lens
with the Gaussian transparency defined by the waist radius w0. The spherical waves emitted
by the source are transformed to the Gaussian beams whose propagation axes create a conical
surface with the vertex angle 2θ . Behind the lens, the B-G beam is created by interference of the
Gaussian beams. Its transverse amplitude profile can be approximated by the Bessel function
J0 bounded by the Gaussian envelope. The angle θ is connected with the radius of the central
spot ρ0 of the generated beam,

θ =
2

kρ0
. (25)

As is obvious, similar claims are posed on the lens when the focused Gaussian beam and the
B-G beam are comparable in size,w0F = ρ0. In both cases the lens with the numerical aperture
NA ≈ θ = θG must be used. It seems to be reasonable to compare the length of the propagation
range of both types of beams just for this case. On the accepted assumption that the waist radius
of the focused Gaussian beam is equal to the radius of the central spot of the B-G beam, the
length of the region where the B-G beam maintains its intensity profile can be approximated by

zBG =
kw0w0F

2
. (26)

The ratio of the propagation lengths of the B-G beam and the focused Gaussian beam of a
comparable transverse size can be written as

K ≡ zBG

zG
=

w0

2w0F
. (27)

Important geometrical parameters of the examined beams can be approximately expressed by
means of the focal length f and the numerical aperture of the lens NA = w 0/ f ,

w0F = ρ0 =
2

kNA
, (28)

zG =
4

kNA2 , (29)

zBG = f , (30)

K =
k f NA2

4
. (31)

As is obvious, an elongation of the propagation region of the B-G beam in comparison with the
Gaussian beam of comparable size is limited by the geometrical parameters f and NA of the
available lens. As an example, the light beams with wavelength λ = 0.5 μm transformed by
the lens with f = 10 mm and NA = 0.5 can be compared. In this case, the waist radius of the
Gaussian beam and the radius of the central spot of the B-G beam are equal, w 0F = ρ0 ≈ 0.3 μm.
While the Gaussian beam remains focused in the range of length only z G ≈ 1.3 μm, the B-G
beam propagates with unchanged central spot through the distance z BG ≈ 10 mm. In this case,
the propagation distance is approximately 7800 times longer for the B-G beam than for the
Gaussian beam.

3.2. Efficiency of the power capture inside the beam propagation region

For the convey of microparticles in experiments with optical tweezers, the narrow optical beams
with a long propagation distance are desirable. To compare various types of beams, their spatial



localization of the electromagnetic energy must be quantified. As a convenient measure, the
fraction of the power captured by the detector of a given size and position can be accepted. To
evaluate changes of the efficiency of the power detection inside the propagation region of the
beam, the power captured by the detector with the radius R D is explored in dependence on its
position along the beam propagation direction. In this connection, the power capture coefficient
η is defined as

η(z) =
PZ(z)

P0
, (32)

where PZ is the optical power received by the detector at the position specified by the longitu-
dinal coordinate z and P0 denotes the maximal power captured by the detector at the plane of
the best transverse localization of the beam. In the case of the Gaussian beam, the power P0 is
related to the waist plane of the focused beam and PZ denotes the power captured at the distance
z from the waist plane. The power capture coefficient ηG is in this case defined by

ηG(z) =
1− exp

(−2R2
D/w2

)
1− exp

(−2R2
D/w2

0F

) , (33)

where

w2 = w2
0F +

z2λ 2

π2w2
0F

. (34)

For the B-G beam, the power capture coefficient can be obtained in an acceptable approxima-
tion. It is based on the assumption that the size of the detector is small in comparison with
the waist radius of the Gaussian envelope, RD << w0. In this case, the Gaussian background
appearing in IBG given by (18) is approximately constant at the area of the detector and P0 is
given by

P0 = 2πI0

∫ RD

0
J2

0(ktρ)ρdρ , (35)

where I0 is a constant intensity used for scaling of the total optical power carried by the beam.
After integration we obtain

P0 = πR2
DIk

[
J2

0 (ktRD)+ J2
1(ktRD)

]
. (36)

In the propagation range of the B-G beam, the size and shape of the central spot remain un-
changed and only the axial intensity must be scaled due to redistribution of the energy in the
side lobes. If the detector is placed inside the propagation region (z < z BG), the captured power
can be approximated by

PZ = IBG(0,z)P0, (37)

where IBG(0,z) is the axial intensity of the B-G beam given by (20). In the used approximation,
the power capture efficiency of the B-G beam can be estimated as

ηBG(z) = IBG(0,z). (38)

To compare energetics of the Gaussian and B-G beams, it is useful to express a distance at
which the power transfer efficiency falls to the given value η G and ηBG, respectively. For the
Gaussian beam it can be written as

z =
zG

2

√
−1− 2R2

D

w2
0F lnV

, (39)



where

V = 1−ηG

[
1− exp

(
−2R2

D

w2
0F

)]
. (40)

For the B-G beam we obtain

z = zBG

√
− lnηBG

2
. (41)

Changes of the efficiency of the power capture inside the propagation region of the Gaussian
and B-G beams can be examined by (39) and (41). Similarly as in the example demonstrating
the geometrical parameters of the beams we assume λ = 0.5 μm, f = 10 mm and NA = 0.5.
In this case, the waist radius of the Gaussian beam is equal to the radius of the central spot of
the B-G beam, w0F = ρ0 = 0.3 μm. In the analysis of the captured power, the detector with the
radius comparable to the beam spot, RD = 0.3 μm, is placed at the plane where the maximal
power is detected. This choice was motivated by the fact that the B-G beams can manipulate
particles whose size is comparable to the beam core. If the object is moved along the axis of
the beam, some energy escapes due to diffraction effects and the captured power goes down.
In the case of the focused Gaussian beam, the power falls to 80% on a very short distance of 1
μm. For the B-G beam, the power captured by the detector remains over 80% on a very long
distance of more than 3 mm.

3.3. Optical transverse relocation of the beam spot

As follows from (2), the ND beam is created by interference of plane waves with the specified
propagation directions and arbitrary amplitudes and phases. The amplitude and phase modula-
tion A(ψ) of the plane wave spectrum can be used for shaping of the beam intensity profile or
for the targeted transverse relocation of the beam spot. If the amplitude of the separate plane
waves is constant and their phase is modulated by

A(ψ) = exp[ikt(Δxcosψ + Δysinψ)], (42)

the complex amplitude of the created ND beam is proportional to the expression

UN ∝ exp(−ikzz) J0

[
kt

√
(x−Δx)2 +(y−Δy)2

]
. (43)

In this case, the beam amplitude profile is described by the zero-order Bessel function. The
beam spot remains unchanged in free propagation but its axis is transversely shifted to the
position given by [Δx,Δy]. If the phase modulation (42) is used in (4), the B-G beam with the
transversely relocated intensity spot is described. Unlike the theoretical Bessel beam, the spot
of the B-G beam is nonsymmetricly bounded by the Gaussian envelope at the off-axis position.
The intensity profiles of the theoretical Bessel beam and the realizable B-G beam are illustrated
in Fig. 3. In experiments, the phase shift of the plane wave components (42) can be realized at
the Fourier plane of the lens in the 4-f optical system illustrated in Fig. 4. The transformation
can be simply explained for the case of the zero-order input Bessel beam whose axis coincides
with the lens axis. The spatial spectrum of the beam created by the first Fourier lens has a shape
of the bright circle with the radius ρS inversely proportional to the spot size of the input beam
ρ0. Alternatively, it can be expressed by the beam parameter k t , ρS ≈ f kt/k, where f is the focal
length of the lens. To perform required phase shift A(ψ) of the separate plane wave components
localized at the circle it is sufficient to place a wedge prism with the vertex angle α near the



Fig. 3. The intensity spot of the B-G beam at (a) the on-axis and (b) the off-axis positions.

focal plane of the lens. If the wedge prism is oriented along the x-axis as shown in Fig. 4, the
phase modulation of the transmitted light can be approximately expressed by

t(ψ) = exp[ikt(n−1)α f cosψ ], (44)

where n is the refractive index of the wedge prism and the insignificant constant phase shift
was omitted. Interference of the light transmitted through the wedge prism creates the inclined
divergent B-G beam [9]. By the second Fourier lens, it is transformed to the off-axis B-G beam.
In the assumed theoretical case its complex amplitude is given by (43). From comparison of
(42) with (44) it is clear that the wedge prism in the assumed orientation causes the transverse
relocation of the beam spot to the position (Δx,0). The shift along the x-axis is given by

Δx = (n−1)α f . (45)

It is simple to show that the relocation of the beam spot to the arbitrary position [Δx,Δy] can
be ensured by means of the wedge prism with a variable vertex angle whose position can be
changed by rotation around the lens axis. In experiments it can be realized by means of the
diasporometer.

Fig. 4. Illustration of the phase modulation of the B-G beam spatial spectrum resulting in
the transverse relocation of the beam spot.

4. Design of the laser beam converter

As was shown, the P-N beams possess unique propagation features interesting for applications.
Their main advantage consists in (i) realization of an extremely narrow beam with a control-
lable length of the propagation range, (ii) achievement of the nearly constant efficiency of the



power capture inside the propagation region, (iii) possibility to relocate the beam spot by phase
modulation of the spatial spectrum. In the paper, the design and realization of the laser conver-
tor enabling generation of the adjustable P-N beam of the B-G type is described. The convertor
is designed as a compact optical system illuminated by laser radiation guided by the optical
fiber. As its output, the B-G beam of specified parameters is obtained. It has intensity spot of
the required size whose shape remains unchanged in a long propagation region. The core axis of
the beam is adjustable, it can be transversely relocated in a well defined area without changing
direction. This action can be performed by a working movement of the optical diasporome-
ter. Such beam is suitable for adjusting of optical elements because its directionality is well
maintained for all transverse positions of the beam spot. By means of a simple auxiliary optical
system, the B-G beam can be reduced to minisized beam with the core of several microme-
ters. In this configuration, the laser convertor works as the laser tweezer enabling conveying
and transport of microparticles along desired trajectories. The movement of the optical traps is
controlled by a simple action of the diasporometer.

Fig. 5. Laser convertor C used in the set-up for conveying and transfer of microparticles
along desired trajectory (F-fiber, LC-collimating lens, A-axicon, D-diasporometer, L1, L2,
L3-lenses, M-mirror, LM-microscope objective, S-sample).

Optical scheme of the designed laser convertor is illustrated in Fig. 5. The laser radiation
leaving the optical fiber F is collimated by the lens LC and directed to the axicon A. Behind the
axicon, the B-G beam whose intensity profile can be approximated by the zero-order Bessel
function bounded by the Gaussian envelope is created. The subsequent lenses L 1 and L2 are
placed so that they work as a telescope. The role of the telescope is dual - it scales the input beam
and enables its relocation by the phase modulation introduced by the diasporometer placed at
the back focal plane of the lens L1. It is designed in such a way that can operate as a wedge
prism with variable vertex angle rotating around the beam axis.

Though the B-G beam entering the telescope can be realized by several ways, the method
using the axicon was chosen owing to its very good energetic efficiency. The radius ρ 1 of the
spot size of the created beam depends on the axicon vertex angle τ and can be estimated by

ρ1 ≈ 0.4λ
(n−1)

(π
2 − τ

2

) (46)

where λ and n denote the wavelength of the used radiation and the refractive index of the
axicon, respectively. The telescope composed of the lenses L 1 and L2 scales the input beam in a
measure depending on the magnification of the telescope given by the focal length of the lenses
f1 and f2, Γ1 = − f1/ f2. The core radius of the beam behind the telescope then can be written



as

ρ2 =
ρ1

|Γ1|

√
1−

(
0.4λ

r1

)2

(1−Γ2
1). (47)

The length of the propagation region of the beam created by the axicon z 1 depends on the axicon
vertex angle and on its diameter. The telescope changes not only the spot size of the input beam
but also its range. It can be expressed by means of the magnification as

z2 = z1/Γ2
1. (48)

The diasporometer simulating action of the wedge prism with the variable angle α causes the
off-axis shift of the beam spot whose magnitude is given by

h = (n−1)α f2. (49)

The direction of the shift is given by the azimuthal orientation of the wedge prism. To reduce
the size of the beam to microscale, an additional telescope must be used. If the beam is to be
exploited in optical manipulation, the telescope is composed of the auxiliary lens L 3 with the
focal length f3 and the microscope objective LM with the focal length fM . Changes of the beam
spot size and the beam propagation range caused by the additional telescope are also given by
(47) and (48) but the magnification Γ1 must be replaced by Γ2 = − f3/ fM . The off-axis shift of
the beam core h is reduced by the additional telescope to the value h/Γ 2.

5. Realization of the beam convertor and experimental results

After a dimensional design, the laser convertor shown in Fig. 5 was optimized by the standard
optical software and parameters of its components were specified. In the convertor testing,
the radiation of the He-Ne laser (632 nm, 15 mW) was brought by the optical fiber with the
numerical aperture NA = 0.13 and mode field diameter MFD = 3.3 μm. The collimation of the
input light was performed by the lens LC with the focal length fC = 25.4 mm. The B-G beam
was created by the axicon with the vertex angle τ = 178 ◦ (Eksma 130-0278). For the transverse
relocation of the beam spot the diasporometer with the range of deviation angles ±0.5 ◦ was
used. The transformation of the B-G beam was realized by the telescope composed of the
lenses with the focal lengths f1 = 35 mm and f2 = 250 mm. The photo of the compact laser
adapter is shown in Fig. 6a. The beam appearing behind the laser convertor has the core radius
200 μm and the length of existence about 14 m. It is applicable to the centering or adjusting of
optical elements. Alternatively, a collimating lens with the larger focal length can be used. In
this case the propagation range of the beam can be enlarged up to 20 m. The tranverse relocation
of the beam core can be performed at the area of 4.5×4.5 mm 2. In performed experiment, the
theoretical efficiency of the power capture inside the propagation region of the generated beam
was also examined. The B-G beam created by the laser convertor was ten times dimensionally
reduced by a telescope so that the radius of its core was approximately ρ 0 = 20 μm. The power
captured by the detection area with the radius RD = ρ0 = 20 μm was measured for various
positions inside the beam propagation region. It was performed in such a way that the reduced
beam was imaged to the CCD camera and the accepted power was determined by means of the
image processing. The obtained data enabled evaluation of the dependence of the coefficient
ηBG defined by (38) and (20) on the propagation coordinate z. In Fig. 7, a very good agreement
of the theoretical and experimental results is illustrated.

The laser convertor was also tested in the set-up for the manipulation of microparticles. In
this case, the laser Verdi V2 (532 nm, maximal power 2 W) was used. The B-G beam leaving
the convertor was dimensionally reduced by the additional telescope composed of the lens



Fig. 6. Photos of (a) the compact laser adapter and (b) the set-up for conveying and transport
of microparticles.
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Fig. 7. Efficiency of the power capture inside the propagation region of the B-G beam.

L3 of the focal length f3 = 200 mm and the microscope objective f M = 1.8 mm (Olympus,
UPLFLN 100×O2). The photo of the set-up is shown in Fig. 6b. The lowest power of the laser
enabling optical manipulation was 60 mW, the power delivered to the created optical trap was
approximately 50% of the light power leaving the fiber. The radius of the core of the beam
in the optical tweezer is around 2 μm. By this beam we were able to catch, convey and shift
the polystyrene particles (Duke Scientific) with diameter 5 μm at the area of 40× 40 μm 2.
Results of the experiment are shown in Fig. 8. By means of the diasporometer, the particles
were continuously transposed along the illustrated path. The snapshots illustrate the caught
particles at the positions (a)-(f) of the defined trajectory. The small particles with the diameter
around 1 μm could be conveyed, but not manipulated. After their catching and conveying, they



were stuck on the cover glass.

Fig. 8. Catching and movement of the polystyrene bead along a required trajectory by
means of the set-up with the laser convertor.

6. Conclusion

In the paper, the geometrical and energetic parameters of the P-N beams of the B-G type were
examined theoretically and experimentally. Their unique properties were utilized for realiza-
tion of the experiment enabling conversion of the fiber mode to the long and narrow B-G beam
whose axis can be transversely relocated at the defined area. The experimental set-up was op-
timized and produced as a compact laser convertor in the Meopta - optika company. The laser
convertor was tested in real experimental conditions aimed for centering and adjusting of op-
tical components. The particular attention was focused on a verification of the possibility to
utilize the laser convertor as a device working as the laser tweezer enabling dynamical optical
manipulation. In this case, the transverse relocation of the beam spot is controlled by a sim-
ple working movement of the diasporometer placed inside the laser convertor. By this way the
particles with the diameter of several micrometers can be caught, conveyed and moved along
the required trajectory. The realized set-up represents simpler and cheaper alternative of the
holographical tweezers based on utilization of the spatial light modulator [16]. Some of the
applications of the B-G beams demonstrated in the biophotonic workstation based on the use of
the spatial light modulator [17] can be ensured with the set-up utilizing the laser convertor. The
optical system of the laser convertor can be coupled with the spiral phase mask placed near the
diasporometer. After this simple modification, the transversely movable optical vortices can be
created. They can be applied to the promising experiments on the transfer of the orbital angular
momentum to microparticles.
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