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Abstract:  Spatially periodic optical fields can be used to sort dielectric 
microscopic particles as a function of size, shape or refractive index. In this 
paper we elucidate through both theory and experiment the behavior of 
silica microspheres moving under the influence of the periodic optical field 
provided by a Bessel beam. We compare two different computational 
models, one based on Mie scattering, the other on geometrical ray optics 
and find good qualitative agreement, with both models predicting the 
existence of distinct size-dependent phases of particle behavior. We verify 
these predictions by providing experimental observations of the individual 
behavioral phases. 
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1. Introduction 

It is now well known that focused light beams can be used to trap and manipulate microscopic 
particles [1]. Optical tweezers, as this technique has become known, have enabled key 
advances in many branches of science. In biology they provide an ideal tool for the study of 
molecular motors and DNA at the single-molecule level [2,3]. In the physical sciences optical 
tweezers have also enabled a wide range of studies in colloid science, optical angular 
momentum and microfluidics [4,5]. Stationary extended patterns of light (also termed optical 
landscapes) have been used to arrange and accumulate microparticles in pre-described arrays 
[6]. More recent work has shown that optical lattices may be used to separate biological 
material in a microfluidic flow, due to the varying response of the particles to the underlying 
optical potential energy landscape (a function of their size, shape and relative refractive index) 
[7,8]. The interactions of particles with time-varying optical landscapes have also been studied 
in the context of particle sorting [9,10] and thermal ratchets [11].  

Several authors have already discussed the relationship between the Brownian motion of 
microscopic particles and applied optical fields. McCann et al. [12] showed that Kramers’ 
theory for the thermally activated escape from a potential well could be used to describe the 
movement of 0.6μm silica particles between two overlapping optical traps. The behavior of 
spherical objects in a one-dimensional periodic optical landscape has been studied in detail 
both theoretically and experimentally by Zemanek et al. [13-16] and a strong dependence of 
the optical force on particle size has been proved. Tatarkova et al. [17] showed that Brownian 
motion could be combined with the one-dimensional optical potential provided laterally by the 
rings of a single tilted Bessel beam (a washboard potential) to produce directed Brownian 
transport of microscopic particles. It has been observed that for biological samples, where 
typical particle length scales are larger than the ring spacing, there is no need for the tilting of 
the intensity profile of the Bessel beam in order to activate particle motion [18]. In general, 
these studies have provided solid experimental evidence of a strong dependence of the 
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interactions between light and microscopic particles on the geometry of the particles and their 
relative size with respect to the characteristic dimensions of the optical landscape.  

Theoretical calculations for the optical forces in different potential landscapes support 
some of the experimental observations that have been reported [13,15,19]. Although 
equilibrium positions can be established by considering the forces alone, a simultaneous 
examination of the associated potential energy profile can help to elucidate key aspects of the 
overall particle behavior within the optical distribution 

In this paper, we examine in detail the dynamics of particles moving under the influence 
of the optical landscape associated with the transverse cross-section of a Bessel beam. The 
azimuthally-symmetric nature of this profile implies that we can consider the particles as 
moving in a one-dimensional (radial) potential. As we discuss the motion of particles in a 
horizontal plane, both gravity and the radiation pressure force along the direction of beam 
propagation can be neglected and the coupling of thermal forces with the optical field 
becomes the main consideration.  

We compare experimental observations with theoretical predictions for the optical forces 
and potentials calculated by means of two alternative approaches. We believe this study will 
provide a backdrop for the design of ad hoc tailored optical landscapes that may give rise to 
several potential applications, particularly with relation to optical sorting.   

2. Optical forces and potentials: theoretical modeling 

For our case study, we will consider the light intensity distribution associated with a zeroth-
order Bessel beam. For a recent review of Bessel beams and their potential applications, see 
[20]. Bessel beams were first introduced by Durnin [21] as propagation-invariant or 
diffraction-free optical fields. We can think of the wave vectors k of the plane waves that 
combine to form a Bessel beam as lying on the surface of a cone. The apex angle α of this 
imaginary cone provides us with the expressions kr=k sin(α) and kz=k cos(α) for the radial and 
axial components of the wave vectors.  The electric component of the optical field of an ideal 
zeroth-order Bessel beam is given in the paraxial approximation by 

 ( ){ }0 0( , ) ( )expB r zE t E J k r i k z tω= −r , (1) 

where E0B is the amplitude of the electric field on the optical axis of the Bessel beam, J0 is the 
first class Bessel function of zeroth-order and ω is the angular frequency of the field. 
Experimentally, a reasonable and efficient approximation to an ideal Bessel beam can be 
generated within a finite region of space by illuminating a conical lens – also called an axicon 
– with a well-collimated Gaussian beam. The distance over which this Bessel beam can be 
considered non-diffracting (Fig. 1(a)) is commonly known as the maximum propagation 
distance and is denoted by zmax. The corresponding intensity distribution can be approximated 
using the stationary phase method to yield [22] 
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Here P represents the power of the incident Gaussian beam, while wc is the beam’s half-width. 
The maximum propagation distance zmax can be expressed as: 

 ,
)tan(max α

cw
z =  (3) 

where for small α, α ≈ (nax-1)γ in air and zmax≈wc /[(nax-1)γ].  nax is the refractive index of the 
axicon and γ is its opening angle.  

In cross-section (Fig. 1(b)), this beam is characterized by a bright core surrounded by 
concentric rings of decreasing intensity. From the term J0(krr) in Eq. (2) the characteristic 
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transverse dimensions of the beam depend on kr and consequently on the axicon parameter 
γ. In practice a system of lenses can be added after the axicon to reduce the ring structure to a 
scale appropriate for optical micro-manipulation. We define the width of a particular ring as 
the distance between two consecutive radial intensity minima. Theoretically, the width of the 
n-th Bessel beam ring is given by Δρn = (Δxn/kr), where Δxn= (xn+1 - xn) represents the 
separation between two consecutive roots in the zero-order Bessel function. As n→∞, Δxn 
quickly converges to π and we can approximate  

 ,
2sin

λρ
α

Δ ≈  (4) 

where λ is the wavelength in the medium in which the Bessel beam is formed. 

 

 
Fig. 1. (Color online) (a) Cross-section of a Bessel beam along direction of propagation. (b) 
Cross-section perpendicular to direction of propagation, taken at point A in (a). The figures 
were generated using a fast Fourier transform beam propagation algorithm, as used in previous 
work [23]. 

 

In this paper we are primarily concerned with the properties of Bessel beams in the transverse 
plane. For this reason, in our calculations we set a fixed z plane at the position of maximum 
intensity along the beam propagation axis. From Eq. (2) this position is given by zpeak=zmax/2. 
It is important to note that because the Bessel beam does not change significantly over small 
displacements along the direction of propagation, slight movement of a microscopic particle 
along z will not cause significant variations in the associated optical potential. This is not the 
case with conventional optical traps [1,12].  

Given a light intensity distribution, optical forces and potentials can be calculated by 
using different approximations, depending on the particle’s radius, R0, with respect to the 
wavelength λ of the light in the medium. In the Rayleigh regime (R0<<λ), the particles are 
implicitly very small and can be approximated as point dipoles. In this case the shape of the 
optical force and potential energy distributions as a function of the particle’s position turns out 
to be independent of the particle size or geometry, and depends only on the light distribution 
itself [24,25]. In contrast, for larger spherical objects, where R0≈λ or R0>>λ, forces can be 
calculated by a rigorous electromagnetic model based on Mie scattering theory [16,26] or by 
ray-tracing methods [19,27,28]. 

In this paper we present calculations obtained using the Mie scattering theory and 
compare the findings with experimental observations. We also performed calculations using a 
simpler geometric ray optics model, and towards the end of the paper provide a qualitative 
comparison of the two models. 

Our primary method for optical force calculation is based on light scattering and it 
assumes that the beam created behind the axicon possesses the form of an ideal non-
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diffracting beam that does not change its properties upon propagation. This is a vectorial 
expression and is also valid for non-paraxial configurations. The following form of the electric 
and magnetic components of the field has been found [16,26]:  
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where ex,y,z are the cartesian unit vectors and φ is the azimuthal angle in the beam-centred 

cylindrical system of coordinates (φ =0 implies that the x-axis is aligned along the direction 
of the linear polarization of the beam incident on the axicon). EB0 is the electric field 
amplitude of this non-diffracting beam on the optical axis and Jm is the first class Bessel 
function of mth order. The parameter ( )sin / 1 cosβ α α= +  is responsible for an asymmetry 

in this non-diffracting beam which becomes more significant as the angle α increases. In the 
limit 0β → , we obtain a scalar electric field that has the same spatial transversal profile as the 
Bessel beam considered in Eq. (1).  

Given a vectorial description of the beam, the optical force calculations based on the Mie 
theory require a decomposition of the incident beam into a system of spherical harmonics with 
amplitudes 
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where ξ=2πR0/λ, Er
i and Br

i are the radial components of the electric and magnetic fields 
respectively, incident on the surface of the spherical particle (expressed in spherical 
coordinates as (R0, ϕ, θ)  with the origin at the sphere centre), Y*

lm are the complex-conjugated 
spherical harmonics and ψ is the Ricatti-Bessel function. In this description the beam is not 
strictly azimuthally symmetrical and 

 2 2 2
0 0 0 0 0 0sin 2 cos( )sin , cosr r R R r z z Rθ ϕ ϕ θ θ= + + − = +  (9)  

where ϕ0 is the azimuthal angle of the centre of the sphere in the cylindrical system of 
coordinates of the beam. The forces and torques acting on a spherical object can be calculated 
from the equations presented by Barton [26].  

Computationally, the double integration in Eqs. (7) and (8) can be time consuming. By 
applying the idealized non-diffracting properties of this beam formed behind the axicon, we 
simplify the coefficients Alm and Blm  and require only a single integration [16]. Despite this 
simplification, this approach is still computationally demanding. Computation time increases 
with particle size and for spheres much larger than a micron it may be preferable to turn to a 
simpler, geometrical model if computation time is a concern.  
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To calculate the transverse optical force in the ray optics regime, we employ a model 
developed in previous work [19,27]. In this case our zeroth-order Bessel beam is considered to 
be an azimuthally symmetric intensity distribution for which the energy flux is directed only 
along the beam axis (z). The basic equation for obtaining the radial optical force exerted on a 
dielectric sphere of radius R0 can be written as  

 22 2
20

0 0 2
0 0

sin 2( ) sin 2
( , ) ( , ) sin 2 sin 2 cos .

2 1 2 cos 2
m t

t

n R R
F r z I r z R T d d

c R R

π π

ρ
θ θ θθ θ ϕ ϕ θ

θ
⎡ ⎤⎛ ⎞− += −⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

∫ ∫
 (10) 

The integration is carried out over the illuminated hemisphere of the particle θ ∈[0,π], ϕ 
∈[0,2π]; where θ  and ϕ are the polar and azimuthal angles, respectively, in spherical 
coordinates. As we have assumed that all of the light rays arrive parallel to beam axis, θ 
coincides with the incidence angle at each point on the sphere’s surface and the transmitted 
angle is denoted by θt. R and T represent the reflectance and transmittance coefficients 
averaged over the two transverse polarization directions at each point and c/nm represents the 
speed of light in the surrounding medium. We use Eq. (2) here to describe the intensity of the 
incident beam.  

The coordinates of each point at the particle’s surface, (R0, ϕ, θ), and the position of the 
particle's center within the beam profile, (r, z), are again related through Eq. (9), with ϕ0=0 in 
this case since with  this approach the beam is considered to be rotationally symmetric. 

The external work needed to shift the particle radially from the beam center to some 
distance r is independent of the azimuthal coordinate and is defined as  

 
0

( , ) ( ', ) '.
r

peak peakU r z z F r z z drρ= = − =∫  (11) 

3. Experimental set-up 

In order to monitor the behavior of different particles within a Bessel beam we implemented 
the experimental set-up illustrated in Fig. 2. The beam from a 1070nm fiber laser (IPG Laser), 
with a spot diameter of 1.6 mm, illuminated the back flat side of an axicon of angle γ=1˚. A 
pair of lenses reduced the dimensions of the Bessel beam so that the typical transverse ring 
thickness was of the order of the diameter of the particles under examination. Great care was 
taken to ensure that the intensity distribution was azimuthally invariant. A dielectric mirror 
directed the beam into the sample chamber while allowing white light back illumination to 
enter the system. A half-wave plate and polarizing beam-splitting cube allowed precise control 
over the power of the beam without altering the operating characteristics of the laser. The 
sample plane was imaged and observed by means of a 100x oil-immersion objective and a 
Pulnix PE2015 CCD camera. A second dielectric mirror diverted most of the Bessel beam 
away from the camera, transmitting only a small portion of the beam through onto the camera 
surface. The video signal was fed into a computer via a National Instruments IMAQ PCI-1408 
video capture card and stored for subsequent analysis. A single-beam optical trap was also 
incorporated into the set-up in order to allow precise and consistent positioning of individual 
particles at predetermined regions of interest within the Bessel beam profile. For this purpose, 
part of the output laser beam was diverted before the axicon and redirected through the back 
aperture of the imaging objective. A system of mirrors and lenses made the optical tweezers 
fully steerable in the sample plane. Following particle placement at a specific location within 
the Bessel beam, the tweezers beam was blocked, allowing the natural evolution of particle 
motion in the Bessel landscape to be monitored. Silica spheres with mean radii of 
R0=1.15±0.12μm, R0=2.5±0.21μm and R0=3.42±0.29μm (Bangs Laboratories) were 
suspended in deuterium oxide (D2O). D2O was used instead of H2O to minimize the effect of 
heating due to absorption of laser light at the wavelength of 1070nm. We did not consider 
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spheres smaller than 2.3μm because their more pronounced Brownian motion and tendency to 
diffuse away from the substrate made them difficult to follow using video tracking. Dilute 
colloidal samples were used to avoid any unwanted colloid-colloid interactions. The silica 
particles were denser than the surrounding medium and settled quickly to the bottom of the 
sample cell. The Bessel beam illuminated the sample from below. Elevation can occur when 
the particles reach the core [18] but the radiation pressure in the surrounding rings was not 
sufficient to raise the particles there away from the substrate. Trajectories of the particles were 
established by analyzing the output of the CCD camera with pattern-matching based particle-
tracking software, which we developed specifically for this purpose [29]. 

 

 
 

Fig. 2. (Color online) Overview of the experimental set-up. A system of beam cubes and half-
wave plates modulated the power of a collimated 1070nm laser beam. One beam line 
illuminated an axicon, creating a Bessel beam, which was then imaged onto the sample stage. A 
second beam line was used to create a standard optical trap, with a 4f lens system mapping a 
steering mirror to the back aperture of the imaging microscope objective. A CCD camera was 
used to record particle behavior in the Bessel beam. 

 

4. Results and discussion  

In this section we present theoretical results predicting the optical forces and associated 
optical potentials obtained with the Mie model for four different particle sizes. On this basis, 
we realize a qualitative, comparative analysis with experimental observations of the 
equilibrium positions of the particles and their motion within the transversal Bessel optical 
landscape.  

4.1 Theoretical results 

The radial optical force and potential profiles were calculated for silica spheres of varying 
size. The complete set of results can be seen in the movie associated with Fig. 3. The shape of 
the potential energy landscape is strongly dependent on the sphere size. As the size is 
increased, distinct phases of particle behavior are observed.  
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The first distinctive phase of behavior concerns particles whose diameter is smaller than 
the characteristic ring width. As an example we consider a particle of radius R0=1.15μm (Fig. 
3) and a Bessel beam with a characteristic ring width of Δρ=3.1μm. Equilibrium points are 
represented in the Fig. 3. by circles and correspond closely to local intensity maxima (the 
dashed curve represents the transverse radial intensity profile.)  

 

 
Fig. 3. [1.6MB] (Color online) Optical radial forces (red) and corresponding potential profiles 
(blue) obtained for a silica sphere of radius 1.15µm (refractive index nb=1.4496) immersed in 
water (nm=1.333) using the Mie scattering theory. The intensity of the Bessel beam on-axis was 
equal to the intensity obtained from Eq. (2) for z=zmax/2, P=200mW, λ=1070/nm nm, 
wc=28.3μm, α=7.5˚. The dashed curve shows the corresponding radial intensity profile of the 
Bessel beam. Circles denote the radial equilibrium positions, while * mark the extreme values 
of the optical force. The corresponding movie shows the dependency on particle radius. 

 
Interestingly, although the Bessel beam itself is untilted, we still observe a washboard-like 
potential, with potential energy barriers lower on the inner side of each well (Fig. 3(b), inset). 
While we would expect small particles to remain radially localized at the potential energy 
minima, thermally activated escape from the well remains a possibility. Due to the lowering of 
the potential barriers on the inner side of each well, we expect to see particles move 
preferentially towards the beam core. 

As we increase the particle size, we observe a change in behavior. As an example, for 
silica spheres with a radius R0=2.15μm (Fig. 4(a, b)), the positive radial force regimes and 
corresponding potential energy barriers seen in Fig. 3 disappear. These particles are free to 
drift into the core of the Bessel beam without obstruction. This phenomenon is similar to the 
observed behavior of spheres in spatially periodic fields (standing waves) where spheres of a 
certain size do not feel the periodic field structure [9,10,13,15]. 
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Fig. 4. (Color online) Optical radial forces (red) and corresponding potential energy profiles 
(blue) obtained for two sizes of silica spheres. From (a) we can see that when R0=2.15µm the 
radial force is uniformly negative. The potential profile (b) shows only one equilibrium point, 
at the beam core. In contrast, increasing the particle size slightly to R0=2.5µm (c) reveals a new 
regime where particles can be trapped radially in equilibrium points located between the rings 
(d). The dashed curve shows the corresponding radial intensity profile. 

 

Increasing the sphere size slightly further reveals another regime, where particles can be 
radially trapped as they straddle two rings. As an example, Fig. 4(c, d) shows calculated plots 
for a sphere of radius R0=2.5μm. The potential energy wells associated with this phenomenon 
(Fig. 4(d), inset) are significantly shallower than those associated with the R0=1.15μm sphere 
(Fig. 3(b), inset). For example, at a radial position of r=10.4µm, we predict the R0=1.15µm 
sphere to experience a potential well with a depth of 166kT. The R0=2.5µm sphere, on the 
other hand, will experience a well at r=11.6µm with a depth of 34kT, almost five times 
shallower. 

There exists a fourth and final distinct behavioral phase. Intuitively, since the core of a 
Bessel beam is considerably brighter than the surrounding rings, it might be expected that the 
center of the beam’s core would coincide with the location of the bottom of the deepest 
potential well. For most particle sizes this is the case. For some sphere radii, however, core 
equilibrium positions exist which are not located at the centre of the beam but are displaced 
off-axis. Figure 5 shows the calculated radial force and potential profiles for a sphere of radius 
R0=3.42μm. In this case the core equilibrium position of the sphere is offset from the beam 
core by 1.16µm. This behavior is highlighted in Fig. 6 and in the associated movie. Similar 
effects have been observed both theoretically and experimentally in spatially periodic fields 
[9,10,13,15]. 
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Fig. 5. (Color online) Optical radial forces (red) and corresponding potential profiles (blue) 
obtained for silica spheres of radius 3.42µm. The core equilibrium position is offset from the 
centre of the Bessel beam by approximately 1µm. Additionally, shallow potential energy wells 
can be seen 15µm and 18µm from the core (inset).  

 
 

nm  

Fig. 6. [1.5MB] (Color online) Transversal intensity profile of the Bessel beam with the 
equilibrium position of two selected spheres. The black ring (radius 2.35μm) denotes the first 
intensity minimum of the Bessel beam. The stable equilibrium point for the smaller particle (a) 
is localized off axis, while for the larger particle (b) it is aligned with the core of the Bessel 
beam. The associated movie shows the movement of the core equilibrium position as particle 
radius is increased. 

 

4.2 Comparison with experiment 

In this section we compare the behavior predicted by our Mie theory with experimental 
observations. From Fig. 3 it can be seen that for particles whose diameter is smaller than the 
typical ring spacing (R0=1.15μm), positive radial force regimes exist across the profile. Stable 
equilibrium points exist at the roots of the force plot where the slope of the curve is negative. 
As expected, these positions correspond to local minima in the radial potential energy plot. 
For these minima, the height of the inner potential energy barrier (towards the beam core) is 
lower than the outer barrier. Under these circumstances, the particle behaves as it would in a 
tilted washboard potential [17] – there is higher probability of a thermally activated transition 
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towards the core of the beam than away from it. We therefore expect that a particle should, via 
a series of jumps both towards and away from the core, ultimately drift radially inwards.  

In agreement with predictions from Fig. 3 we observed that when the power in the Bessel 
beam is sufficiently low the particles occasionally hop from one adjacent ring to another. We 
verified this behavior by recording the transitions of a particle between adjacent rings. A 
trajectory typical of a R0=1.15μm particle is illustrated in Fig. 7. The particles are confined in 
the radial direction, but are free to move azimuthally around the rings. This image shows two 
consecutive hops from the fifth ring to the third ring. The hopping events occur swiftly and are 
easily identifiable. 

 

 
Fig. 7. Typical transversal trajectory of a R0=1.15µm silica sphere in a Bessel beam. When a 
sphere escapes a ring, its transition to the adjacent ring is relatively direct. 

 

The single beam optical trap was used to locate a R0=1.15μm sphere at a precise point in the 
centre of the fifth ring. Blocking the tweezers beam released the particle and initiated a timer. 
Using the same sphere, 200 transition times were measured for four different Bessel beam 
power levels. 

Figure 8 shows histograms of the transition times from the fifth ring at four different 
beam powers. In all cases the number of transitions inwards (green) is larger than the number 
of transitions outwards (red), in agreement with what we would expect from the theory. At 
powers greater than 200mW the transition times became so large that the collection of large 
data sets became impractical.  
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Fig. 8. (Color online) Histograms for the transition times of a R0=1.15μm sphere from the 5th-
ring of a Bessel beam for different values of the overall beam power: (a) 50mW, (b) 100mW, 
(c) 150mW, (d) 200mW. The mean escape time increases as the beam power is increased. 
Histograms have bin widths of 10secs. Red bars represent hops outwards, green represent hops 
inwards towards beam core. In each case τin represents the estimated mean first passage time, 
in seconds, towards the core of the beam. 

 

Increasing the overall beam power results in a deepening of the potential wells, thereby 
increasing the mean escape time from a given ring. This is manifested in Fig. 8 as a 
broadening of the distributions for higher powers. We estimated the mean first passage time 
towards the core, τin. by fitting curves of the form (1/ ) exp( / )tτ τ−  to the histograms. We see 
that the mean first passage time increases with increasing beam power, as we might expect. 

For the case of R0=2.5μm, we observed that, as predicted, equilibrium positions exist in a 
configuration whereby the particle straddles two of the rings. At distances less than 8µm from 
the core our model predicts no stable equilibrium points and we observed experimentally that 
in this range the particle does indeed travel into the core of the beam uninhibited. This can be 
seen in Fig. 9(a), which represents a 21-second video sequence. The particle is briefly 
localized between the 2nd and 3rd rings (r≈8µm), which agrees well with our prediction of the 
presence of a shallow potential well at this location. 

At radial distances larger than 8µm, further small positive force regimes can be seen (Fig. 
4(c)). In contrast to the case of the R0=1.15μm particle, the potential energy minima for 
R0=2.5μm correspond spatially to local intensity minima of the beam profile. This scenario is 
similar to the case of spheres placed in a one-dimensional tilted standing wave, with all the 
consequences [13,14]. Fig. 9(b) shows a 2.5μm particle moving in the region between the fifth 
and sixth rings. As the potential wells at this distance are relatively broad and shallow (Fig. 
4(d), inset), the particle exhibits some degree of freedom, however the Kramers’ time for the 
escape of a particle from a potential well scales with the fluid drag and we find that the larger 
2.5µm spheres can be trapped in these states for a comparatively long time. This trajectory 
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represents movement over 1000 seconds of video, considerably longer than the typical ring 
occupation time of R0=1.15μm spheres at a similar radial distance and overall beam power.  
  

   
Fig. 9. (Color online) (a)  A typical trajectory for a R0=2.5µm silica particle in a Bessel beam 
closer to the core. (b) Away from the core, R0=2.5µm particles can be trapped loosely across 
two rings. Beam power is 200mW in both cases. 

 

Our Mie model predicts that for a particle of radius R0=3.42μm, the core equilibrium position 
will be offset from the centre of the beam by 1.15μm (Fig. 5). The offset equilibrium position 
has been observed experimentally with excellent agreement and a typical particle trajectory 
can be seen in Fig. 10. The mean radial core separation distance for this stably trapped particle 
is ~1μm. 

 

 
 

Fig. 10. (Color online) A with R0=3.42μm particle has been tracked for over 15 minutes. Its 
centre of mass, which moves due to Brownian motion, remains approximately 1μm from the 
beam core (red cross) at all times. 

 

4.3 Comparison with geometric ray optics model 
 

For particle radii in the range 0.5µm< R0<5µm, we observe reasonable agreement between the 
radial force curves predicted by our two models (Fig. 11). Although there are some clear 
discrepancies in the absolute value of the force predicted by the two models for certain 
combinations of particle size and radial position (e.g. Fig. 11(b), r=2), for potential sorting 
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applications the primary concern is the location of stable equilibrium points. For R0<5µm, the 
equilibrium points overlap very closely for the two models.  

   

 
Fig. 11. (Color online) Two comparative plots showing predictions for radial force in a Bessel 
beam, showing our geometric model (GM) against our Mie model (Mie). (a) R0=0.5µm. (b) 
R0=4.7µm. 

 

As the sphere size increases, the computational effort required to calculate forces using our 
Mie theory becomes prohibitive. Table 1 provides a comparison between the computation 
times for our two models. For this test we calculated radial force profiles, similar to those 
shown in Fig. 11, with 75 radial positions used in each case. These results were obtained on a 
PC (AMD Athlon 64 X2 Dual  4200+, 2.21 GHz, 2 GB RAM), running Matlab v7.3.0.367 
(R2006b) on Windows XP. The time taken for the geometric model to calculate the force 
profile is independent of particle size. In contrast, the computation time for the Mie model 
increases exponentially with particle radius. 

Table 1. Comparison of Computation Times for Our Two Theoretical Models  

Particle radius R0=0.5µm R0=5µm R0=10µm 
Geometric optics model 18.7s 18.7s 18.7s 
Mie model 137s 3269s 12893s 

 

To obtain a strong qualitative picture of what underlies optical sorting observed in Bessel 
beams, it is useful to plot a map of the radial forces experienced by particles as a function of 
both particle size and radial position in the Bessel beam. In Fig. 12 we present a plot of the 
predicted force produced using our ray optics model.  
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Fig. 12. (Color online) (a) Plot of radial optical force due to a Bessel beam as a function of 
particle-core separation and particle diameter. (b) Radial intensity profile of Bessel beam for 
comparison. 

 
Figure 12(a) shows the predicted force plot for a 200mW Bessel beam. A plot of the 
transverse radial Bessel beam intensity profile is shown in Fig. 12(b) for comparison. The 
orange-red regions in the force plot correspond to positive radial forces, while the yellow 
boundaries of these regions identify areas of approximately zero radial force. The yellow 
regions to the right of the orange-red zones constitute stable equilibrium positions for silica 
spheres in this Bessel beam. 

The hopping regime for particles whose diameter is smaller than or similar to the typical 
ring spacing can clearly be seen in the bottom right-hand corner of the plot, characterized by a 
number of regions of alternating positive and negative radial force (zone A). Zone B identifies 
a narrow region of constant negative radial force. Particles that occupy this regime can be 
expected to cruise into the core of the Bessel beam without obstruction. As the particle radius 
is increased further, we see a second zone of oscillating positive and negative radial force 
emerge (zone C). In contrast to zone A, these regions of positive radial force produce stable 
equilibrium positions that are spatially matched to the inter-ring intensity minima of the 
Bessel beam. Zone D overlaps zone C somewhat and is characterized by particle behavior 
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close to the core of the Bessel beam. Particles that lie within zone D will experience offset 
core equilibrium positions, as shown in Figs. 5, 6 and 10.  As we increase the sphere size 
further still, both of our models predict that these distinct zones of behavior repeat, although 
the innermost equilibrium points become increasingly distant from the core with increasing 
particle radii. 

4.4 Static Optical Sorting in a Bessel Beam 

The goal of static optical sorting is to spatially separate particles without an applied fluid flow. 
The response of a dielectric particle to a Bessel beam is strongly dependent on the relationship 
between its size and the characteristic transverse lengthscales of the Bessel beam. By choosing 
beam parameters appropriately, it is possible to generate a landscape for which one of the two 
species will be encouraged to migrate to the core of the beam, while the other remains radially 
trapped in the beam’s rings. With either of our two models, given two suitably distinct particle 
species we can calculate the parameters of the Bessel required to separate them. Bessel beams 
can be created using reconfigurable optical devices such as spatial light modulators [30]. As a 
consequence, this work provides a foundation for the understanding and development of 
interactive static optical sorting platforms.  

5. Conclusion 

Using two different theoretical models, we have successfully established a qualitative picture 
of the physical principles that underlie the previously reported observation of static optical 
sorting in a Bessel beam [19]. We found that both our Mie and geometrical approaches 
produced similar predictions for the general nature of the radial optical force, and these have 
been verified in the laboratory by experiment. In particular, we have elucidated the nature of 
the locations of stable equilibrium points as a function of particle size, and these results may 
provide a backdrop to the future development of static optical sorting devices.  

Additionally, we made a related observation that builds on earlier work on optical 
washboard potentials. For particles which are smaller than the typical thickness of the rings 
that form the Bessel beam (in our case R0=1.15µm), we observe radial localization in the 
associated minima of the optical potential. If the beam power is sufficiently low, these 
particles can thermally escape the radial potential energy wells and hop to adjacent rings. Due 
to slight asymmetries in the local radial intensity profile of any given ring, both of our models 
predict a relative lowering of the potential energy barrier on the inner side of the ring. As a 
consequence, small particles are more likely to migrate to the centre of the Bessel beam than 
away with it, without the need for an explicitly tilted Bessel beam as previously suggested 
[17]. 
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